Accessing document fields and special variables
editAccessing document fields and special variables
editDepending on where a script is used, it will have access to certain special variables and document fields.
Update scripts
editA script used in the update,
update-by-query, or reindex
API will have access to the ctx
variable which exposes:
|
Access to the document |
|
The operation that should be applied to the document: |
|
Access to document metadata fields, some of which may be read-only. |
These scripts do not have access to the doc
variable and have to use ctx
to access the documents they operate on.
Search and aggregation scripts
editWith the exception of script fields which are executed once per search hit, scripts used in search and aggregations will be executed once for every document which might match a query or an aggregation. Depending on how many documents you have, this could mean millions or billions of executions: these scripts need to be fast!
Field values can be accessed from a script using
doc-values,
the _source
field, or
stored fields,
each of which is explained below.
Accessing the score of a document within a script
editScripts used in the function_score
query,
in script-based sorting, or in
aggregations have access to the _score
variable which
represents the current relevance score of a document.
Here’s an example of using a script in a
function_score
query to alter the
relevance _score
of each document:
resp = client.index( index="my-index-000001", id="1", refresh=True, document={ "text": "quick brown fox", "popularity": 1 }, ) print(resp) resp1 = client.index( index="my-index-000001", id="2", refresh=True, document={ "text": "quick fox", "popularity": 5 }, ) print(resp1) resp2 = client.search( index="my-index-000001", query={ "function_score": { "query": { "match": { "text": "quick brown fox" } }, "script_score": { "script": { "lang": "expression", "source": "_score * doc['popularity']" } } } }, ) print(resp2)
response = client.index( index: 'my-index-000001', id: 1, refresh: true, body: { text: 'quick brown fox', popularity: 1 } ) puts response response = client.index( index: 'my-index-000001', id: 2, refresh: true, body: { text: 'quick fox', popularity: 5 } ) puts response response = client.search( index: 'my-index-000001', body: { query: { function_score: { query: { match: { text: 'quick brown fox' } }, script_score: { script: { lang: 'expression', source: "_score * doc['popularity']" } } } } } ) puts response
const response = await client.index({ index: "my-index-000001", id: 1, refresh: "true", document: { text: "quick brown fox", popularity: 1, }, }); console.log(response); const response1 = await client.index({ index: "my-index-000001", id: 2, refresh: "true", document: { text: "quick fox", popularity: 5, }, }); console.log(response1); const response2 = await client.search({ index: "my-index-000001", query: { function_score: { query: { match: { text: "quick brown fox", }, }, script_score: { script: { lang: "expression", source: "_score * doc['popularity']", }, }, }, }, }); console.log(response2);
PUT my-index-000001/_doc/1?refresh { "text": "quick brown fox", "popularity": 1 } PUT my-index-000001/_doc/2?refresh { "text": "quick fox", "popularity": 5 } GET my-index-000001/_search { "query": { "function_score": { "query": { "match": { "text": "quick brown fox" } }, "script_score": { "script": { "lang": "expression", "source": "_score * doc['popularity']" } } } } }
Accessing term statistics of a document within a script
editScripts used in a script_score
query have access to the _termStats
variable which provides statistical information about the terms in the child query.
In the following example, _termStats
is used within a script_score
query to retrieve the average term frequency for the terms quick
, brown
, and fox
in the text
field:
resp = client.index( index="my-index-000001", id="1", refresh=True, document={ "text": "quick brown fox" }, ) print(resp) resp1 = client.index( index="my-index-000001", id="2", refresh=True, document={ "text": "quick fox" }, ) print(resp1) resp2 = client.search( index="my-index-000001", query={ "script_score": { "query": { "match": { "text": "quick brown fox" } }, "script": { "source": "_termStats.termFreq().getAverage()" } } }, ) print(resp2)
const response = await client.index({ index: "my-index-000001", id: 1, refresh: "true", document: { text: "quick brown fox", }, }); console.log(response); const response1 = await client.index({ index: "my-index-000001", id: 2, refresh: "true", document: { text: "quick fox", }, }); console.log(response1); const response2 = await client.search({ index: "my-index-000001", query: { script_score: { query: { match: { text: "quick brown fox", }, }, script: { source: "_termStats.termFreq().getAverage()", }, }, }, }); console.log(response2);
PUT my-index-000001/_doc/1?refresh { "text": "quick brown fox" } PUT my-index-000001/_doc/2?refresh { "text": "quick fox" } GET my-index-000001/_search { "query": { "script_score": { "query": { "match": { "text": "quick brown fox" } }, "script": { "source": "_termStats.termFreq().getAverage()" } } } }
Child query used to infer the field and the terms considered in term statistics. |
|
The script calculates the average document frequency for the terms in the query using |
_termStats
provides access to the following functions for working with term statistics:
-
uniqueTermsCount
: Returns the total number of unique terms in the query. This value is the same across all documents. -
matchedTermsCount
: Returns the count of query terms that matched within the current document. -
docFreq
: Provides document frequency statistics for the terms in the query, indicating how many documents contain each term. This value is consistent across all documents. -
totalTermFreq
: Provides the total frequency of terms across all documents, representing how often each term appears in the entire corpus. This value is consistent across all documents. -
termFreq
: Returns the frequency of query terms within the current document, showing how often each term appears in that document.
Functions returning aggregated statistics
The docFreq
, termFreq
and totalTermFreq
functions return objects that represent statistics across all terms of the child query.
Statistics provides support for the following methods:
getAverage()
: Returns the average value of the metric.
getMin()
: Returns the minimum value of the metric.
getMax()
: Returns the maximum value of the metric.
getSum()
: Returns the sum of the metric values.
getCount()
: Returns the count of terms included in the metric calculation.
Painless language required
The _termStats
variable is only available when using the Painless scripting language.
Doc values
editBy far the fastest most efficient way to access a field value from a
script is to use the doc['field_name']
syntax, which retrieves the field
value from doc values. Doc values are a columnar field value
store, enabled by default on all fields except for analyzed text
fields.
resp = client.index( index="my-index-000001", id="1", refresh=True, document={ "cost_price": 100 }, ) print(resp) resp1 = client.search( index="my-index-000001", script_fields={ "sales_price": { "script": { "lang": "expression", "source": "doc['cost_price'] * markup", "params": { "markup": 0.2 } } } }, ) print(resp1)
response = client.index( index: 'my-index-000001', id: 1, refresh: true, body: { cost_price: 100 } ) puts response response = client.search( index: 'my-index-000001', body: { script_fields: { sales_price: { script: { lang: 'expression', source: "doc['cost_price'] * markup", params: { markup: 0.2 } } } } } ) puts response
const response = await client.index({ index: "my-index-000001", id: 1, refresh: "true", document: { cost_price: 100, }, }); console.log(response); const response1 = await client.search({ index: "my-index-000001", script_fields: { sales_price: { script: { lang: "expression", source: "doc['cost_price'] * markup", params: { markup: 0.2, }, }, }, }, }); console.log(response1);
PUT my-index-000001/_doc/1?refresh { "cost_price": 100 } GET my-index-000001/_search { "script_fields": { "sales_price": { "script": { "lang": "expression", "source": "doc['cost_price'] * markup", "params": { "markup": 0.2 } } } } }
Doc-values can only return "simple" field values like numbers, dates, geo- points, terms, etc, or arrays of these values if the field is multi-valued. It cannot return JSON objects.
Missing fields
The doc['field']
will throw an error if field
is missing from the mappings.
In painless
, a check can first be done with doc.containsKey('field')
to guard
accessing the doc
map. Unfortunately, there is no way to check for the
existence of the field in mappings in an expression
script.
Doc values and text
fields
The doc['field']
syntax can also be used for analyzed text
fields
if fielddata
is enabled, but BEWARE: enabling fielddata on a
text
field requires loading all of the terms into the JVM heap, which can be
very expensive both in terms of memory and CPU. It seldom makes sense to
access text
fields from scripts.
The document _source
editThe document _source
can be accessed using the
_source.field_name
syntax. The _source
is loaded as a map-of-maps, so
properties within object fields can be accessed as, for example,
_source.name.first
.
Prefer doc-values to _source
Accessing the _source
field is much slower than using doc-values. The
_source field is optimised for returning several fields per result, while doc
values are optimised for accessing the value of a specific field in many
documents.
It makes sense to use _source
when generating a
script field for the top ten hits from a
search result but, for other search and aggregation use cases, always prefer
using doc values.
For instance:
resp = client.indices.create( index="my-index-000001", mappings={ "properties": { "first_name": { "type": "text" }, "last_name": { "type": "text" } } }, ) print(resp) resp1 = client.index( index="my-index-000001", id="1", refresh=True, document={ "first_name": "Barry", "last_name": "White" }, ) print(resp1) resp2 = client.search( index="my-index-000001", script_fields={ "full_name": { "script": { "lang": "painless", "source": "params._source.first_name + ' ' + params._source.last_name" } } }, ) print(resp2)
response = client.indices.create( index: 'my-index-000001', body: { mappings: { properties: { first_name: { type: 'text' }, last_name: { type: 'text' } } } } ) puts response response = client.index( index: 'my-index-000001', id: 1, refresh: true, body: { first_name: 'Barry', last_name: 'White' } ) puts response response = client.search( index: 'my-index-000001', body: { script_fields: { full_name: { script: { lang: 'painless', source: "params._source.first_name + ' ' + params._source.last_name" } } } } ) puts response
const response = await client.indices.create({ index: "my-index-000001", mappings: { properties: { first_name: { type: "text", }, last_name: { type: "text", }, }, }, }); console.log(response); const response1 = await client.index({ index: "my-index-000001", id: 1, refresh: "true", document: { first_name: "Barry", last_name: "White", }, }); console.log(response1); const response2 = await client.search({ index: "my-index-000001", script_fields: { full_name: { script: { lang: "painless", source: "params._source.first_name + ' ' + params._source.last_name", }, }, }, }); console.log(response2);
PUT my-index-000001 { "mappings": { "properties": { "first_name": { "type": "text" }, "last_name": { "type": "text" } } } } PUT my-index-000001/_doc/1?refresh { "first_name": "Barry", "last_name": "White" } GET my-index-000001/_search { "script_fields": { "full_name": { "script": { "lang": "painless", "source": "params._source.first_name + ' ' + params._source.last_name" } } } }
Stored fields
editStored fields — fields explicitly marked as
"store": true
in the mapping — can be accessed using the
_fields['field_name'].value
or _fields['field_name']
syntax:
resp = client.indices.create( index="my-index-000001", mappings={ "properties": { "full_name": { "type": "text", "store": True }, "title": { "type": "text", "store": True } } }, ) print(resp) resp1 = client.index( index="my-index-000001", id="1", refresh=True, document={ "full_name": "Alice Ball", "title": "Professor" }, ) print(resp1) resp2 = client.search( index="my-index-000001", script_fields={ "name_with_title": { "script": { "lang": "painless", "source": "params._fields['title'].value + ' ' + params._fields['full_name'].value" } } }, ) print(resp2)
response = client.indices.create( index: 'my-index-000001', body: { mappings: { properties: { full_name: { type: 'text', store: true }, title: { type: 'text', store: true } } } } ) puts response response = client.index( index: 'my-index-000001', id: 1, refresh: true, body: { full_name: 'Alice Ball', title: 'Professor' } ) puts response response = client.search( index: 'my-index-000001', body: { script_fields: { name_with_title: { script: { lang: 'painless', source: "params._fields['title'].value + ' ' + params._fields['full_name'].value" } } } } ) puts response
const response = await client.indices.create({ index: "my-index-000001", mappings: { properties: { full_name: { type: "text", store: true, }, title: { type: "text", store: true, }, }, }, }); console.log(response); const response1 = await client.index({ index: "my-index-000001", id: 1, refresh: "true", document: { full_name: "Alice Ball", title: "Professor", }, }); console.log(response1); const response2 = await client.search({ index: "my-index-000001", script_fields: { name_with_title: { script: { lang: "painless", source: "params._fields['title'].value + ' ' + params._fields['full_name'].value", }, }, }, }); console.log(response2);
PUT my-index-000001 { "mappings": { "properties": { "full_name": { "type": "text", "store": true }, "title": { "type": "text", "store": true } } } } PUT my-index-000001/_doc/1?refresh { "full_name": "Alice Ball", "title": "Professor" } GET my-index-000001/_search { "script_fields": { "name_with_title": { "script": { "lang": "painless", "source": "params._fields['title'].value + ' ' + params._fields['full_name'].value" } } } }
Stored vs _source
The _source
field is just a special stored field, so the performance is
similar to that of other stored fields. The _source
provides access to the
original document body that was indexed (including the ability to distinguish
null
values from empty fields, single-value arrays from plain scalars, etc).
The only time it really makes sense to use stored fields instead of the
_source
field is when the _source
is very large and it is less costly to
access a few small stored fields instead of the entire _source
.