WARNING: Version 2.2 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Terms Aggregation
editTerms Aggregation
editA multi-bucket value source based aggregation where buckets are dynamically built - one per unique value.
Example:
{ "aggs" : { "genders" : { "terms" : { "field" : "gender" } } } }
Response:
{ ... "aggregations" : { "genders" : { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets" : [ { "key" : "male", "doc_count" : 10 }, { "key" : "female", "doc_count" : 10 }, ] } } }
an upper bound of the error on the document counts for each term, see below |
|
when there are lots of unique terms, elasticsearch only returns the top terms; this number is the sum of the document counts for all buckets that are not part of the response |
|
the list of the top buckets, the meaning of |
By default, the terms
aggregation will return the buckets for the top ten terms ordered by the doc_count
. One can
change this default behaviour by setting the size
parameter.
Size
editThe size
parameter can be set to define how many term buckets should be returned out of the overall terms list. By
default, the node coordinating the search process will request each shard to provide its own top size
term buckets
and once all shards respond, it will reduce the results to the final list that will then be returned to the client.
This means that if the number of unique terms is greater than size
, the returned list is slightly off and not accurate
(it could be that the term counts are slightly off and it could even be that a term that should have been in the top
size buckets was not returned). If set to 0
, the size
will be set to Integer.MAX_VALUE
.
Document counts are approximate
editAs described above, the document counts (and the results of any sub aggregations) in the terms aggregation are not always accurate. This is because each shard provides its own view of what the ordered list of terms should be and these are combined to give a final view. Consider the following scenario:
A request is made to obtain the top 5 terms in the field product, ordered by descending document count from an index with 3 shards. In this case each shard is asked to give its top 5 terms.
{ "aggs" : { "products" : { "terms" : { "field" : "product", "size" : 5 } } } }
The terms for each of the three shards are shown below with their respective document counts in brackets:
Shard A | Shard B | Shard C | |
---|---|---|---|
1 |
Product A (25) |
Product A (30) |
Product A (45) |
2 |
Product B (18) |
Product B (25) |
Product C (44) |
3 |
Product C (6) |
Product F (17) |
Product Z (36) |
4 |
Product D (3) |
Product Z (16) |
Product G (30) |
5 |
Product E (2) |
Product G (15) |
Product E (29) |
6 |
Product F (2) |
Product H (14) |
Product H (28) |
7 |
Product G (2) |
Product I (10) |
Product Q (2) |
8 |
Product H (2) |
Product Q (6) |
Product D (1) |
9 |
Product I (1) |
Product J (8) |
|
10 |
Product J (1) |
Product C (4) |
The shards will return their top 5 terms so the results from the shards will be:
Shard A | Shard B | Shard C | |
---|---|---|---|
1 |
Product A (25) |
Product A (30) |
Product A (45) |
2 |
Product B (18) |
Product B (25) |
Product C (44) |
3 |
Product C (6) |
Product F (17) |
Product Z (36) |
4 |
Product D (3) |
Product Z (16) |
Product G (30) |
5 |
Product E (2) |
Product G (15) |
Product E (29) |
Taking the top 5 results from each of the shards (as requested) and combining them to make a final top 5 list produces the following:
1 |
Product A (100) |
2 |
Product Z (52) |
3 |
Product C (50) |
4 |
Product G (45) |
5 |
Product B (43) |
Because Product A was returned from all shards we know that its document count value is accurate. Product C was only returned by shards A and C so its document count is shown as 50 but this is not an accurate count. Product C exists on shard B, but its count of 4 was not high enough to put Product C into the top 5 list for that shard. Product Z was also returned only by 2 shards but the third shard does not contain the term. There is no way of knowing, at the point of combining the results to produce the final list of terms, that there is an error in the document count for Product C and not for Product Z. Product H has a document count of 44 across all 3 shards but was not included in the final list of terms because it did not make it into the top five terms on any of the shards.
Shard Size
editThe higher the requested size
is, the more accurate the results will be, but also, the more expensive it will be to
compute the final results (both due to bigger priority queues that are managed on a shard level and due to bigger data
transfers between the nodes and the client).
The shard_size
parameter can be used to minimize the extra work that comes with bigger requested size
. When defined,
it will determine how many terms the coordinating node will request from each shard. Once all the shards responded, the
coordinating node will then reduce them to a final result which will be based on the size
parameter - this way,
one can increase the accuracy of the returned terms and avoid the overhead of streaming a big list of buckets back to
the client. If set to 0
, the shard_size
will be set to Integer.MAX_VALUE
.
shard_size
cannot be smaller than size
(as it doesn’t make much sense). When it is, elasticsearch will
override it and reset it to be equal to size
.
It is possible to not limit the number of terms that are returned by setting size
to 0
. Don’t use this
on high-cardinality fields as this will kill both your CPU since terms need to be return sorted, and your network.
The default shard_size
is a multiple of the size
parameter which is dependant on the number of shards.
Calculating Document Count Error
editThere are two error values which can be shown on the terms aggregation. The first gives a value for the aggregation as a whole which represents the maximum potential document count for a term which did not make it into the final list of terms. This is calculated as the sum of the document count from the last term returned from each shard .For the example given above the value would be 46 (2 + 15 + 29). This means that in the worst case scenario a term which was not returned could have the 4th highest document count.
{ ... "aggregations" : { "products" : { "doc_count_error_upper_bound" : 46, "buckets" : [ { "key" : "Product A", "doc_count" : 100 }, { "key" : "Product Z", "doc_count" : 52 }, ... ] } } }
Per bucket document count error
editThis functionality is in technical preview and may be changed or removed in a future release. Elastic will work to fix any issues, but features in technical preview are not subject to the support SLA of official GA features.
The second error value can be enabled by setting the show_term_doc_count_error
parameter to true. This shows an error value
for each term returned by the aggregation which represents the worst case error in the document count and can be useful when
deciding on a value for the shard_size
parameter. This is calculated by summing the document counts for the last term returned
by all shards which did not return the term. In the example above the error in the document count for Product C would be 15 as
Shard B was the only shard not to return the term and the document count of the last termit did return was 15. The actual document
count of Product C was 54 so the document count was only actually off by 4 even though the worst case was that it would be off by
15. Product A, however has an error of 0 for its document count, since every shard returned it we can be confident that the count
returned is accurate.
{ ... "aggregations" : { "products" : { "doc_count_error_upper_bound" : 46, "buckets" : [ { "key" : "Product A", "doc_count" : 100, "doc_count_error_upper_bound" : 0 }, { "key" : "Product Z", "doc_count" : 52, "doc_count_error_upper_bound" : 2 }, ... ] } } }
These errors can only be calculated in this way when the terms are ordered by descending document count. When the aggregation is ordered by the terms values themselves (either ascending or descending) there is no error in the document count since if a shard does not return a particular term which appears in the results from another shard, it must not have that term in its index. When the aggregation is either sorted by a sub aggregation or in order of ascending document count, the error in the document counts cannot be determined and is given a value of -1 to indicate this.
Order
editThe order of the buckets can be customized by setting the order
parameter. By default, the buckets are ordered by
their doc_count
descending. It is also possible to change this behaviour as follows:
Ordering the buckets by their doc_count
in an ascending manner:
{ "aggs" : { "genders" : { "terms" : { "field" : "gender", "order" : { "_count" : "asc" } } } } }
Ordering the buckets alphabetically by their terms in an ascending manner:
{ "aggs" : { "genders" : { "terms" : { "field" : "gender", "order" : { "_term" : "asc" } } } } }
Ordering the buckets by single value metrics sub-aggregation (identified by the aggregation name):
{ "aggs" : { "genders" : { "terms" : { "field" : "gender", "order" : { "avg_height" : "desc" } }, "aggs" : { "avg_height" : { "avg" : { "field" : "height" } } } } } }
Ordering the buckets by multi value metrics sub-aggregation (identified by the aggregation name):
{ "aggs" : { "genders" : { "terms" : { "field" : "gender", "order" : { "height_stats.avg" : "desc" } }, "aggs" : { "height_stats" : { "stats" : { "field" : "height" } } } } } }
It is also possible to order the buckets based on a "deeper" aggregation in the hierarchy. This is supported as long
as the aggregations path are of a single-bucket type, where the last aggregation in the path may either be a single-bucket
one or a metrics one. If it’s a single-bucket type, the order will be defined by the number of docs in the bucket (i.e. doc_count
),
in case it’s a metrics one, the same rules as above apply (where the path must indicate the metric name to sort by in case of
a multi-value metrics aggregation, and in case of a single-value metrics aggregation the sort will be applied on that value).
The path must be defined in the following form:
AGG_SEPARATOR := '>' METRIC_SEPARATOR := '.' AGG_NAME := <the name of the aggregation> METRIC := <the name of the metric (in case of multi-value metrics aggregation)> PATH := <AGG_NAME>[<AGG_SEPARATOR><AGG_NAME>]*[<METRIC_SEPARATOR><METRIC>]
{ "aggs" : { "countries" : { "terms" : { "field" : "address.country", "order" : { "females>height_stats.avg" : "desc" } }, "aggs" : { "females" : { "filter" : { "term" : { "gender" : "female" }}, "aggs" : { "height_stats" : { "stats" : { "field" : "height" }} } } } } } }
The above will sort the countries buckets based on the average height among the female population.
Multiple criteria can be used to order the buckets by providing an array of order criteria such as the following:
{ "aggs" : { "countries" : { "terms" : { "field" : "address.country", "order" : [ { "females>height_stats.avg" : "desc" }, { "_count" : "desc" } ] }, "aggs" : { "females" : { "filter" : { "term" : { "gender" : { "female" }}}, "aggs" : { "height_stats" : { "stats" : { "field" : "height" }} } } } } } }
The above will sort the countries buckets based on the average height among the female population and then by
their doc_count
in descending order.
In the event that two buckets share the same values for all order criteria the bucket’s term value is used as a tie-breaker in ascending alphabetical order to prevent non-deterministic ordering of buckets.
Minimum document count
editIt is possible to only return terms that match more than a configured number of hits using the min_doc_count
option:
{ "aggs" : { "tags" : { "terms" : { "field" : "tags", "min_doc_count": 10 } } } }
The above aggregation would only return tags which have been found in 10 hits or more. Default value is 1
.
Terms are collected and ordered on a shard level and merged with the terms collected from other shards in a second step. However, the shard does not have the information about the global document count available. The decision if a term is added to a candidate list depends only on the order computed on the shard using local shard frequencies. The min_doc_count
criterion is only applied after merging local terms statistics of all shards. In a way the decision to add the term as a candidate is made without being very certain about if the term will actually reach the required min_doc_count
. This might cause many (globally) high frequent terms to be missing in the final result if low frequent terms populated the candidate lists. To avoid this, the shard_size
parameter can be increased to allow more candidate terms on the shards. However, this increases memory consumption and network traffic.
shard_min_doc_count
parameter
The parameter shard_min_doc_count
regulates the certainty a shard has if the term should actually be added to the candidate list or not with respect to the min_doc_count
. Terms will only be considered if their local shard frequency within the set is higher than the shard_min_doc_count
. If your dictionary contains many low frequent terms and you are not interested in those (for example misspellings), then you can set the shard_min_doc_count
parameter to filter out candidate terms on a shard level that will with a reasonable certainty not reach the required min_doc_count
even after merging the local counts. shard_min_doc_count
is set to 0
per default and has no effect unless you explicitly set it.
Setting min_doc_count
=0
will also return buckets for terms that didn’t match any hit. However, some of
the returned terms which have a document count of zero might only belong to deleted documents or documents
from other types, so there is no warranty that a match_all
query would find a positive document count for
those terms.
When NOT sorting on doc_count
descending, high values of min_doc_count
may return a number of buckets
which is less than size
because not enough data was gathered from the shards. Missing buckets can be
back by increasing shard_size
.
Setting shard_min_doc_count
too high will cause terms to be filtered out on a shard level. This value should be set much lower than min_doc_count/#shards
.
Script
editGenerating the terms using a script:
{ "aggs" : { "genders" : { "terms" : { "script" : "doc['gender'].value" } } } }
This will interpret the script
parameter as an inline
script with the default script language and no script parameters. To use a file script use the following syntax:
{ "aggs" : { "genders" : { "terms" : { "script" : { "file": "my_script", "params": { "field": "gender" } } } } } }
for indexed scripts replace the file
parameter with an id
parameter.
Value Script
edit{ "aggs" : { "genders" : { "terms" : { "field" : "gender", "script" : "'Gender: ' +_value" } } } }
Filtering Values
editIt is possible to filter the values for which buckets will be created. This can be done using the include
and
exclude
parameters which are based on regular expression strings or arrays of exact values.
{ "aggs" : { "tags" : { "terms" : { "field" : "tags", "include" : ".*sport.*", "exclude" : "water_.*" } } } }
In the above example, buckets will be created for all the tags that has the word sport
in them, except those starting
with water_
(so the tag water_sports
will no be aggregated). The include
regular expression will determine what
values are "allowed" to be aggregated, while the exclude
determines the values that should not be aggregated. When
both are defined, the exclude
has precedence, meaning, the include
is evaluated first and only then the exclude
.
The syntax is the same as regexp queries.
For matching based on exact values the include
and exclude
parameters can simply take an array of
strings that represent the terms as they are found in the index:
{ "aggs" : { "JapaneseCars" : { "terms" : { "field" : "make", "include" : ["mazda", "honda"] } }, "ActiveCarManufacturers" : { "terms" : { "field" : "make", "exclude" : ["rover", "jensen"] } } } }
Multi-field terms aggregation
editThe terms
aggregation does not support collecting terms from multiple fields
in the same document. The reason is that the terms
agg doesn’t collect the
string term values themselves, but rather uses
global ordinals
to produce a list of all of the unique values in the field. Global ordinals
results in an important performance boost which would not be possible across
multiple fields.
There are two approaches that you can use to perform a terms
agg across
multiple fields:
- Script
- Use a script to retrieve terms from multiple fields. This disables the global ordinals optimization and will be slower than collecting terms from a single field, but it gives you the flexibility to implement this option at search time.
-
copy_to
field -
If you know ahead of time that you want to collect the terms from two or more
fields, then use
copy_to
in your mapping to create a new dedicated field at index time which contains the values from both fields. You can aggregate on this single field, which will benefit from the global ordinals optimization.
Collect mode
editDeferring calculation of child aggregations
For fields with many unique terms and a small number of required results it can be more efficient to delay the calculation of child aggregations until the top parent-level aggs have been pruned. Ordinarily, all branches of the aggregation tree are expanded in one depth-first pass and only then any pruning occurs. In some rare scenarios this can be very wasteful and can hit memory constraints. An example problem scenario is querying a movie database for the 10 most popular actors and their 5 most common co-stars:
{ "aggs" : { "actors" : { "terms" : { "field" : "actors", "size" : 10 }, "aggs" : { "costars" : { "terms" : { "field" : "actors", "size" : 5 } } } } } }
Even though the number of movies may be comparatively small and we want only 50 result buckets there is a combinatorial explosion of buckets
during calculation - a single movie will produce n² buckets where n is the number of actors. The sane option would be to first determine
the 10 most popular actors and only then examine the top co-stars for these 10 actors. This alternative strategy is what we call the breadth_first
collection
mode as opposed to the default depth_first
mode:
{ "aggs" : { "actors" : { "terms" : { "field" : "actors", "size" : 10, "collect_mode" : "breadth_first" }, "aggs" : { "costars" : { "terms" : { "field" : "actors", "size" : 5 } } } } } }
When using breadth_first
mode the set of documents that fall into the uppermost buckets are
cached for subsequent replay so there is a memory overhead in doing this which is linear with the number of matching documents.
In most requests the volume of buckets generated is smaller than the number of documents that fall into them so the default depth_first
collection mode is normally the best bet but occasionally the breadth_first
strategy can be significantly more efficient. Currently
elasticsearch will always use the depth_first
collect_mode unless explicitly instructed to use breadth_first
as in the above example.
Note that the order
parameter can still be used to refer to data from a child aggregation when using the breadth_first
setting - the parent
aggregation understands that this child aggregation will need to be called first before any of the other child aggregations.
It is not possible to nest aggregations such as top_hits
which require access to match score information under an aggregation that uses
the breadth_first
collection mode. This is because this would require a RAM buffer to hold the float score value for every document and
this would typically be too costly in terms of RAM.
Execution hint
editThe automated execution optimization is experimental For feature status, see so this parameter is provided temporarily as a way to override the default behaviour[#so this parameter is provided temporarily as a way to override the default behaviour].
There are different mechanisms by which terms aggregations can be executed:
-
by using field values directly in order to aggregate data per-bucket (
map
) -
by using ordinals of the field and preemptively allocating one bucket per ordinal value (
global_ordinals
) -
by using ordinals of the field and dynamically allocating one bucket per ordinal value (
global_ordinals_hash
) -
by using per-segment ordinals to compute counts and remap these counts to global counts using global ordinals (
global_ordinals_low_cardinality
)
Elasticsearch tries to have sensible defaults so this is something that generally doesn’t need to be configured.
map
should only be considered when very few documents match a query. Otherwise the ordinals-based execution modes
are significantly faster. By default, map
is only used when running an aggregation on scripts, since they don’t have
ordinals.
global_ordinals_low_cardinality
only works for leaf terms aggregations but is usually the fastest execution mode. Memory
usage is linear with the number of unique values in the field, so it is only enabled by default on low-cardinality fields.
global_ordinals
is the second fastest option, but the fact that it preemptively allocates buckets can be memory-intensive,
especially if you have one or more sub aggregations. It is used by default on top-level terms aggregations.
global_ordinals_hash
on the contrary to global_ordinals
and global_ordinals_low_cardinality
allocates buckets dynamically
so memory usage is linear to the number of values of the documents that are part of the aggregation scope. It is used by default
in inner aggregations.
[preview]
This functionality is in technical preview and may be changed or removed in a future release. Elastic will work to fix any issues, but features in technical preview are not subject to the support SLA of official GA features.
the possible values are |
Please note that Elasticsearch will ignore this execution hint if it is not applicable and that there is no backward compatibility guarantee on these hints.
Missing value
editThe missing
parameter defines how documents that are missing a value should be treated.
By default they will be ignored but it is also possible to treat them as if they
had a value.