- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 8.2
- Quick start
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Registered domain
- Remove
- Rename
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Aliases
- Search your data
- Collapse search results
- Filter search results
- Highlighting
- Long-running searches
- Near real-time search
- Paginate search results
- Retrieve inner hits
- Retrieve selected fields
- Search across clusters
- Search multiple data streams and indices
- Search shard routing
- Search templates
- Sort search results
- kNN search
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- EQL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- How to
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- Features APIs
- Fleet APIs
- Find structure API
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Ingest APIs
- Info API
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model deployment
- Start trained model deployment
- Stop trained model deployment
- Migration APIs
- Node lifecycle APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Script APIs
- Search APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profile
- Suggest user profile
- Update user profile data
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Get trained models statistics API
editGet trained models statistics API
editRetrieves usage information for trained models.
Request
editGET _ml/trained_models/_stats
GET _ml/trained_models/_all/_stats
GET _ml/trained_models/<model_id>/_stats
GET _ml/trained_models/<model_id>,<model_id_2>/_stats
GET _ml/trained_models/<model_id_pattern*>,<model_id_2>/_stats
Prerequisites
editRequires the monitor_ml
cluster privilege. This privilege is included in the
machine_learning_user
built-in role.
Description
editYou can get usage information for multiple trained models in a single API request by using a comma-separated list of model IDs or a wildcard expression.
Path parameters
edit-
<model_id>
- (Optional, string) The unique identifier of the trained model or a model alias.
Query parameters
edit-
allow_no_match
-
(Optional, Boolean) Specifies what to do when the request:
- Contains wildcard expressions and there are no models that match.
-
Contains the
_all
string or no identifiers and there are no matches. - Contains wildcard expressions and there are only partial matches.
The default value is
true
, which returns an empty array when there are no matches and the subset of results when there are partial matches. If this parameter isfalse
, the request returns a404
status code when there are no matches or only partial matches. -
from
-
(Optional, integer)
Skips the specified number of models. The default value is
0
. -
size
-
(Optional, integer)
Specifies the maximum number of models to obtain. The default value
is
100
.
Response body
edit-
count
-
(integer)
The total number of trained model statistics that matched the requested ID
patterns. Could be higher than the number of items in the
trained_model_stats
array as the size of the array is restricted by the suppliedsize
parameter. -
trained_model_stats
-
(array) An array of trained model statistics, which are sorted by the
model_id
value in ascending order.Properties of trained model stats
-
deployment_stats
-
(list) A collection of deployment stats if one of the provided
model_id
values is deployedProperties of deployment stats
-
allocation_status
-
(object) The detailed allocation status given the deployment configuration.
Properties of allocation stats
-
allocation_count
- (integer) The current number of nodes where the model is allocated.
-
state
-
(string) The detailed allocation state related to the nodes.
-
starting
: Allocations are being attempted but no node currently has the model allocated. -
started
: At least one node has the model allocated. -
fully_allocated
: The deployment is fully allocated and satisfies thetarget_allocation_count
.
-
-
target_allocation_count
- (integer) The desired number of nodes for model allocation.
-
-
error_count
-
(integer)
The sum of
error_count
for all nodes in the deployment. -
inference_count
-
(integer)
The sum of
inference_count
for all nodes in the deployment. -
inference_threads
- (integer) The number of threads used by the inference process.
-
model_id
- (string) The unique identifier of the trained model.
-
model_threads
- (integer) The number of threads used when sending inference requests to the model.
-
nodes
-
(array of objects) The deployment stats for each node that currently has the model allocated.
Properties of node stats
-
average_inference_time_ms
- (double) The average time for each inference call to complete on this node. The average is calculated over the lifetime of the deployment.
-
average_inference_time_ms_last_minute
- (double) The average time for each inference call to complete on this node in the last minute.
-
error_count
- (integer) The number of errors when evaluating the trained model.
-
inference_count
- (integer) The total number of inference calls made against this node for this model.
-
inference_threads
-
(integer)
The number of threads used by the inference process.
This value is limited by the number of hardware threads on the node;
it might therefore differ from the
inference_threads
value in the Start trained model deployment API. -
last_access
- (long) The epoch time stamp of the last inference call for the model on this node.
-
model_threads
-
(integer)
The number of threads used when sending inference requests to the model.
This value is limited by the number of hardware threads on the node;
it might therefore differ from the
model_threads
value in the Start trained model deployment API. -
node
-
(object) Information pertaining to the node.
Properties of node
-
attributes
-
(object)
Lists node attributes such as
ml.machine_memory
orml.max_open_jobs
settings. -
ephemeral_id
- (string) The ephemeral ID of the node.
-
id
- (string) The unique identifier of the node.
-
name
- (string) The node name.
-
transport_address
- (string) The host and port where transport HTTP connections are accepted.
-
-
number_of_pending_requests
- (integer) The number of inference requests queued to be processed.
-
peak_throughput_per_minute
- (integer) The peak number of requests processed in a 1 minute period.
-
routing_state
-
(object) The current routing state and reason for the current routing state for this allocation.
Properties of routing_state
-
reason
-
(string)
The reason for the current state. Usually only populated when the
routing_state
isfailed
. -
routing_state
- (string) The current routing state.
-
starting
: The model is attempting to allocate on this model, inference calls are not yet accepted. -
started
: The model is allocated and ready to accept inference requests. -
stopping
: The model is being deallocated from this node. -
stopped
: The model is fully deallocated from this node. -
failed
: The allocation attempt failed, seereason
field for the potential cause.
-
-
rejected_execution_count
- (integer) The number of inference requests that were not processed because the queue was full.
-
start_time
- (long) The epoch timestamp when the allocation started.
-
timeout_count
- (integer) The number of inference requests that timed out before being processed.
-
throughput_last_minute
- (integer) The number of requests processed in the last 1 minute.
-
-
peak_throughput_per_minute
-
(integer)
The peak number of requests processed in a 1 minute period for
all nodes in the deployment. This is calculated as the sum of
each node’s
peak_throughput_per_minute
value. -
rejected_execution_count
-
(integer)
The sum of
rejected_execution_count
for all nodes in the deployment. Individual nodes reject an inference request if the inference queue is full. The queue size is controlled by thequeue_capacity
setting in the Start trained model deployment API. -
reason
- (string) The reason for the current deployment state. Usually only populated when the model is not deployed to a node.
-
start_time
- (long) The epoch timestamp when the deployment started.
-
state
-
(string) The overall state of the deployment. The values may be:
-
starting
: The deployment has recently started but is not yet usable as the model is not allocated on any nodes. -
started
: The deployment is usable as at least one node has the model allocated. -
stopping
: The deployment is preparing to stop and deallocate the model from the relevant nodes.
-
-
timeout_count
-
(integer)
The sum of
timeout_count
for all nodes in the deployment. -
queue_capacity
- (integer) The number of inference requests that may be queued before new requests are rejected.
-
-
inference_stats
-
(object) A collection of inference stats fields.
Properties of inference stats
-
missing_all_fields_count
- (integer) The number of inference calls where all the training features for the model were missing.
-
inference_count
- (integer) The total number of times the model has been called for inference. This is across all inference contexts, including all pipelines.
-
cache_miss_count
-
(integer)
The number of times the model was loaded for inference and was not retrieved
from the cache. If this number is close to the
inference_count
, then the cache is not being appropriately used. This can be solved by increasing the cache size or its time-to-live (TTL). See General machine learning settings for the appropriate settings. -
failure_count
- (integer) The number of failures when using the model for inference.
-
timestamp
- (time units) The time when the statistics were last updated.
-
-
ingest
-
(object)
A collection of ingest stats for the model across all nodes. The values are
summations of the individual node statistics. The format matches the
ingest
section in Nodes stats. -
model_id
- (string) The unique identifier of the trained model.
-
model_size_stats
-
(object) A collection of model size stats fields.
Properties of model size stats
-
model_size_bytes
- (integer) The size of the model in bytes.
-
required_native_memory_bytes
- (integer) The amount of memory required to load the model in bytes.
-
-
pipeline_count
- (integer) The number of ingest pipelines that currently refer to the model.
-
Response codes
edit-
404
(Missing resources) -
If
allow_no_match
isfalse
, this code indicates that there are no resources that match the request or only partial matches for the request.
Examples
editThe following example gets usage information for all the trained models:
GET _ml/trained_models/_stats
The API returns the following results:
{ "count": 2, "trained_model_stats": [ { "model_id": "flight-delay-prediction-1574775339910", "pipeline_count": 0, "inference_stats": { "failure_count": 0, "inference_count": 4, "cache_miss_count": 3, "missing_all_fields_count": 0, "timestamp": 1592399986979 } }, { "model_id": "regression-job-one-1574775307356", "pipeline_count": 1, "inference_stats": { "failure_count": 0, "inference_count": 178, "cache_miss_count": 3, "missing_all_fields_count": 0, "timestamp": 1592399986979 }, "ingest": { "total": { "count": 178, "time_in_millis": 8, "current": 0, "failed": 0 }, "pipelines": { "flight-delay": { "count": 178, "time_in_millis": 8, "current": 0, "failed": 0, "processors": [ { "inference": { "type": "inference", "stats": { "count": 178, "time_in_millis": 7, "current": 0, "failed": 0 } } } ] } } } } ] }
On this page