Percentiles bucket aggregation
editPercentiles bucket aggregation
editA sibling pipeline aggregation which calculates percentiles across all bucket of a specified metric in a sibling aggregation. The specified metric must be numeric and the sibling aggregation must be a multi-bucket aggregation.
Syntax
editA percentiles_bucket
aggregation looks like this in isolation:
{ "percentiles_bucket": { "buckets_path": "the_sum" } }
Table 78. percentiles_bucket
Parameters
Parameter Name | Description | Required | Default Value |
---|---|---|---|
|
The path to the buckets we wish to find the percentiles for (see |
Required |
|
|
The policy to apply when gaps are found in the data (see Dealing with gaps in the data for more details) |
Optional |
|
|
DecimalFormat pattern for the
output value. If specified, the formatted value is returned in the aggregation’s
|
Optional |
|
|
The list of percentiles to calculate |
Optional |
|
|
Flag which returns the range as an hash instead of an array of key-value pairs |
Optional |
|
The following snippet calculates the percentiles for the total monthly sales
buckets:
resp = client.search( index="sales", size=0, aggs={ "sales_per_month": { "date_histogram": { "field": "date", "calendar_interval": "month" }, "aggs": { "sales": { "sum": { "field": "price" } } } }, "percentiles_monthly_sales": { "percentiles_bucket": { "buckets_path": "sales_per_month>sales", "percents": [ 25, 50, 75 ] } } }, ) print(resp)
response = client.search( index: 'sales', body: { size: 0, aggregations: { sales_per_month: { date_histogram: { field: 'date', calendar_interval: 'month' }, aggregations: { sales: { sum: { field: 'price' } } } }, percentiles_monthly_sales: { percentiles_bucket: { buckets_path: 'sales_per_month>sales', percents: [ 25, 50, 75 ] } } } } ) puts response
const response = await client.search({ index: "sales", size: 0, aggs: { sales_per_month: { date_histogram: { field: "date", calendar_interval: "month", }, aggs: { sales: { sum: { field: "price", }, }, }, }, percentiles_monthly_sales: { percentiles_bucket: { buckets_path: "sales_per_month>sales", percents: [25, 50, 75], }, }, }, }); console.log(response);
POST /sales/_search { "size": 0, "aggs": { "sales_per_month": { "date_histogram": { "field": "date", "calendar_interval": "month" }, "aggs": { "sales": { "sum": { "field": "price" } } } }, "percentiles_monthly_sales": { "percentiles_bucket": { "buckets_path": "sales_per_month>sales", "percents": [ 25.0, 50.0, 75.0 ] } } } }
|
|
|
And the following may be the response:
{ "took": 11, "timed_out": false, "_shards": ..., "hits": ..., "aggregations": { "sales_per_month": { "buckets": [ { "key_as_string": "2015/01/01 00:00:00", "key": 1420070400000, "doc_count": 3, "sales": { "value": 550.0 } }, { "key_as_string": "2015/02/01 00:00:00", "key": 1422748800000, "doc_count": 2, "sales": { "value": 60.0 } }, { "key_as_string": "2015/03/01 00:00:00", "key": 1425168000000, "doc_count": 2, "sales": { "value": 375.0 } } ] }, "percentiles_monthly_sales": { "values" : { "25.0": 375.0, "50.0": 375.0, "75.0": 550.0 } } } }
Percentiles_bucket implementation
editThe percentiles are calculated exactly and is not an approximation (unlike the Percentiles Metric). This means
the implementation maintains an in-memory, sorted list of your data to compute the percentiles, before discarding the
data. You may run into memory pressure issues if you attempt to calculate percentiles over many millions of
data-points in a single percentiles_bucket
.
The Percentile Bucket returns the nearest input data point to the requested percentile, rounding indices toward
positive infinity; it does not interpolate between data points. For example, if there are eight data points and
you request the 50%th
percentile, it will return the 4th
item because ROUND_UP(.50 * (8-1))
is 4
.