- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 8.0
- Quick start
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Registered domain
- Remove
- Rename
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Aliases
- Search your data
- Collapse search results
- Filter search results
- Highlighting
- Long-running searches
- Near real-time search
- Paginate search results
- Retrieve inner hits
- Retrieve selected fields
- Search across clusters
- Search multiple data streams and indices
- Search shard routing
- Search templates
- Sort search results
- kNN search
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Geo-distance
- Geohash grid
- Geotile grid
- Global
- Histogram
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- EQL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Overview
- Concepts
- Automate rollover
- Tutorial: Customize built-in policies
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled
- Configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- How to
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- Features APIs
- Fleet APIs
- Find structure API
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Ingest APIs
- Info API
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model deployment
- Start trained model deployment
- Stop trained model deployment
- Migration APIs
- Node lifecycle APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Script APIs
- Search APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Dependencies and versions
Multi Terms aggregation
editMulti Terms aggregation
editA multi-bucket value source based aggregation where buckets are dynamically built - one per unique set of values. The multi terms
aggregation is very similar to the terms aggregation
, however in most cases
it will be slower than the terms aggregation and will consume more memory. Therefore, if the same set of fields is constantly used,
it would be more efficient to index a combined key for this fields as a separate field and use the terms aggregation on this field.
The multi_term aggregations are the most useful when you need to sort by a number of document or a metric aggregation on a composite
key and get top N results. If sorting is not required and all values are expected to be retrieved using nested terms aggregation or
composite aggregations
will be a faster and more memory efficient solution.
Example:
GET /products/_search { "aggs": { "genres_and_products": { "multi_terms": { "terms": [{ "field": "genre" }, { "field": "product" }] } } } }
|
Response:
{ ... "aggregations" : { "genres_and_products" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 0, "buckets" : [ { "key" : [ "rock", "Product A" ], "key_as_string" : "rock|Product A", "doc_count" : 2 }, { "key" : [ "electronic", "Product B" ], "key_as_string" : "electronic|Product B", "doc_count" : 1 }, { "key" : [ "jazz", "Product B" ], "key_as_string" : "jazz|Product B", "doc_count" : 1 }, { "key" : [ "rock", "Product B" ], "key_as_string" : "rock|Product B", "doc_count" : 1 } ] } } }
an upper bound of the error on the document counts for each term, see <<search-aggregations-bucket-multi-terms-aggregation-approximate-counts,below> |
|
when there are lots of unique terms, Elasticsearch only returns the top terms; this number is the sum of the document counts for all buckets that are not part of the response |
|
the list of the top buckets. |
|
the keys are arrays of values ordered the same ways as expression in the |
By default, the multi_terms
aggregation will return the buckets for the top ten terms ordered by the doc_count
. One can
change this default behaviour by setting the size
parameter.
Aggregation Parameters
editThe following parameters are supported. See terms aggregation
for more detailed
explanation of these parameters.
size |
Optional. Defines how many term buckets should be returned out of the overall terms list. Defaults to 10. |
shard_size |
Optional. The higher the requested |
show_term_doc_count_error |
Optional. Calculates the doc count error on per term basis. Defaults to |
order |
Optional. Specifies the order of the buckets. Defaults to the number of documents per bucket. The bucket terms value is used as a tiebreaker for buckets with the same document count. |
min_doc_count |
Optional. The minimal number of documents in a bucket for it to be returned. Defaults to 1. |
shard_min_doc_count |
Optional. The minimal number of documents in a bucket on each shard for it to be returned. Defaults to
|
collect_mode |
Optional. Specifies the strategy for data collection. The |
Script
editGenerating the terms using a script:
GET /products/_search { "runtime_mappings": { "genre.length": { "type": "long", "script": "emit(doc['genre'].value.length())" } }, "aggs": { "genres_and_products": { "multi_terms": { "terms": [ { "field": "genre.length" }, { "field": "product" } ] } } } }
Response:
{ ... "aggregations" : { "genres_and_products" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 0, "buckets" : [ { "key" : [ 4, "Product A" ], "key_as_string" : "4|Product A", "doc_count" : 2 }, { "key" : [ 4, "Product B" ], "key_as_string" : "4|Product B", "doc_count" : 2 }, { "key" : [ 10, "Product B" ], "key_as_string" : "10|Product B", "doc_count" : 1 } ] } } }
Missing value
editThe missing
parameter defines how documents that are missing a value should be treated.
By default if any of the key components are missing the entire document will be ignored
but it is also possible to treat them as if they had a value by using the missing
parameter.
GET /products/_search { "aggs": { "genres_and_products": { "multi_terms": { "terms": [ { "field": "genre" }, { "field": "product", "missing": "Product Z" } ] } } } }
Response:
{ ... "aggregations" : { "genres_and_products" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 0, "buckets" : [ { "key" : [ "rock", "Product A" ], "key_as_string" : "rock|Product A", "doc_count" : 2 }, { "key" : [ "electronic", "Product B" ], "key_as_string" : "electronic|Product B", "doc_count" : 1 }, { "key" : [ "electronic", "Product Z" ], "key_as_string" : "electronic|Product Z", "doc_count" : 1 }, { "key" : [ "jazz", "Product B" ], "key_as_string" : "jazz|Product B", "doc_count" : 1 }, { "key" : [ "rock", "Product B" ], "key_as_string" : "rock|Product B", "doc_count" : 1 } ] } } }
Mixing field types
editWhen aggregating on multiple indices the type of the aggregated field may not be the same in all indices.
Some types are compatible with each other (integer
and long
or float
and double
) but when the types are a mix
of decimal and non-decimal number the terms aggregation will promote the non-decimal numbers to decimal numbers.
This can result in a loss of precision in the bucket values.
Sub aggregation and sorting examples
editAs most bucket aggregations the multi_term
supports sub aggregations and ordering the buckets by metrics sub-aggregation:
GET /products/_search { "aggs": { "genres_and_products": { "multi_terms": { "terms": [ { "field": "genre" }, { "field": "product" } ], "order": { "total_quantity": "desc" } }, "aggs": { "total_quantity": { "sum": { "field": "quantity" } } } } } }
{ ... "aggregations" : { "genres_and_products" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 0, "buckets" : [ { "key" : [ "jazz", "Product B" ], "key_as_string" : "jazz|Product B", "doc_count" : 1, "total_quantity" : { "value" : 10.0 } }, { "key" : [ "rock", "Product A" ], "key_as_string" : "rock|Product A", "doc_count" : 2, "total_quantity" : { "value" : 9.0 } }, { "key" : [ "electronic", "Product B" ], "key_as_string" : "electronic|Product B", "doc_count" : 1, "total_quantity" : { "value" : 3.0 } }, { "key" : [ "rock", "Product B" ], "key_as_string" : "rock|Product B", "doc_count" : 1, "total_quantity" : { "value" : 1.0 } } ] } } }
On this page