- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.16
- Quick start
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Registered domain
- Remove
- Rename
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Aliases
- Search your data
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Geo-distance
- Geohash grid
- Geotile grid
- Global
- Histogram
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving average
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- EQL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Overview
- Concepts
- Automate rollover
- Customize built-in ILM policies
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Configuring security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- How to
- REST APIs
- API conventions
- Autoscaling APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- Features APIs
- Fleet APIs
- Find structure API
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Freeze index
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Ingest APIs
- Info API
- Licensing APIs
- Logstash APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Migration APIs
- Node lifecycle APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Script APIs
- Search APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 7.16.3
- Elasticsearch version 7.16.2
- Elasticsearch version 7.16.1
- Elasticsearch version 7.16.0
- Elasticsearch version 7.15.2
- Elasticsearch version 7.15.1
- Elasticsearch version 7.15.0
- Elasticsearch version 7.14.2
- Elasticsearch version 7.14.1
- Elasticsearch version 7.14.0
- Elasticsearch version 7.13.4
- Elasticsearch version 7.13.3
- Elasticsearch version 7.13.2
- Elasticsearch version 7.13.1
- Elasticsearch version 7.13.0
- Elasticsearch version 7.12.1
- Elasticsearch version 7.12.0
- Elasticsearch version 7.11.2
- Elasticsearch version 7.11.1
- Elasticsearch version 7.11.0
- Elasticsearch version 7.10.2
- Elasticsearch version 7.10.1
- Elasticsearch version 7.10.0
- Elasticsearch version 7.9.3
- Elasticsearch version 7.9.2
- Elasticsearch version 7.9.1
- Elasticsearch version 7.9.0
- Elasticsearch version 7.8.1
- Elasticsearch version 7.8.0
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
- Dependencies and versions
Join field type
editJoin field type
editThe join
data type is a special field that creates
parent/child relation within documents of the same index.
The relations
section defines a set of possible relations within the documents,
each relation being a parent name and a child name.
We don’t recommend using multiple levels of relations to replicate a relational model. Each level of relation adds an overhead at query time in terms of memory and computation. For better search performance, denormalize your data instead.
A parent/child relation can be defined as follows:
PUT my-index-000001 { "mappings": { "properties": { "my_id": { "type": "keyword" }, "my_join_field": { "type": "join", "relations": { "question": "answer" } } } } }
To index a document with a join, the name of the relation and the optional parent
of the document must be provided in the source
.
For instance the following example creates two parent
documents in the question
context:
PUT my-index-000001/_doc/1?refresh { "my_id": "1", "text": "This is a question", "my_join_field": { "name": "question" } } PUT my-index-000001/_doc/2?refresh { "my_id": "2", "text": "This is another question", "my_join_field": { "name": "question" } }
When indexing parent documents, you can choose to specify just the name of the relation as a shortcut instead of encapsulating it in the normal object notation:
PUT my-index-000001/_doc/1?refresh { "my_id": "1", "text": "This is a question", "my_join_field": "question" } PUT my-index-000001/_doc/2?refresh { "my_id": "2", "text": "This is another question", "my_join_field": "question" }
When indexing a child, the name of the relation as well as the parent id of the document
must be added in the _source
.
It is required to index the lineage of a parent in the same shard so you must always route child documents using their greater parent id.
For instance the following example shows how to index two child
documents:
PUT my-index-000001/_doc/3?routing=1&refresh { "my_id": "3", "text": "This is an answer", "my_join_field": { "name": "answer", "parent": "1" } } PUT my-index-000001/_doc/4?routing=1&refresh { "my_id": "4", "text": "This is another answer", "my_join_field": { "name": "answer", "parent": "1" } }
The routing value is mandatory because parent and child documents must be indexed on the same shard |
|
|
|
The parent id of this child document |
Parent-join and performance
editThe join field shouldn’t be used like joins in a relation database. In Elasticsearch the key to good performance
is to de-normalize your data into documents. Each join field, has_child
or has_parent
query adds a
significant tax to your query performance. It can also trigger global ordinals to be built.
The only case where the join field makes sense is if your data contains a one-to-many relationship where one entity significantly outnumbers the other entity. An example of such case is a use case with products and offers for these products. In the case that offers significantly outnumbers the number of products then it makes sense to model the product as parent document and the offer as child document.
Parent-join restrictions
edit-
Only one
join
field mapping is allowed per index. -
Parent and child documents must be indexed on the same shard.
This means that the same
routing
value needs to be provided when getting, deleting, or updating a child document. - An element can have multiple children but only one parent.
-
It is possible to add a new relation to an existing
join
field. - It is also possible to add a child to an existing element but only if the element is already a parent.
Searching with parent-join
editThe parent-join creates one field to index the name of the relation
within the document (my_parent
, my_child
, …).
It also creates one field per parent/child relation.
The name of this field is the name of the join
field followed by #
and the
name of the parent in the relation.
So for instance for the my_parent
→ [my_child
, another_child
] relation,
the join
field creates an additional field named my_join_field#my_parent
.
This field contains the parent _id
that the document links to
if the document is a child (my_child
or another_child
) and the _id
of
document if it’s a parent (my_parent
).
When searching an index that contains a join
field, these two fields are always
returned in the search response:
GET my-index-000001/_search { "query": { "match_all": {} }, "sort": ["my_id"] }
Will return:
{ ..., "hits": { "total": { "value": 4, "relation": "eq" }, "max_score": null, "hits": [ { "_index": "my-index-000001", "_type": "_doc", "_id": "1", "_score": null, "_source": { "my_id": "1", "text": "This is a question", "my_join_field": "question" }, "sort": [ "1" ] }, { "_index": "my-index-000001", "_type": "_doc", "_id": "2", "_score": null, "_source": { "my_id": "2", "text": "This is another question", "my_join_field": "question" }, "sort": [ "2" ] }, { "_index": "my-index-000001", "_type": "_doc", "_id": "3", "_score": null, "_routing": "1", "_source": { "my_id": "3", "text": "This is an answer", "my_join_field": { "name": "answer", "parent": "1" } }, "sort": [ "3" ] }, { "_index": "my-index-000001", "_type": "_doc", "_id": "4", "_score": null, "_routing": "1", "_source": { "my_id": "4", "text": "This is another answer", "my_join_field": { "name": "answer", "parent": "1" } }, "sort": [ "4" ] } ] } }
Parent-join queries and aggregations
editSee the has_child
and
has_parent
queries,
the children
aggregation,
and inner hits for more information.
The value of the join
field is accessible in aggregations
and scripts, and may be queried with the
parent_id
query:
GET my-index-000001/_search { "query": { "parent_id": { "type": "answer", "id": "1" } }, "aggs": { "parents": { "terms": { "field": "my_join_field#question", "size": 10 } } }, "runtime_mappings": { "parent": { "type": "long", "script": """ emit(Integer.parseInt(doc['my_join_field#question'].value)) """ } }, "fields": [ { "field": "parent" } ] }
Querying the |
|
Aggregating on the |
|
Accessing the |
Global ordinals
editThe join
field uses global ordinals to speed up joins.
Global ordinals need to be rebuilt after any change to a shard. The more
parent id values are stored in a shard, the longer it takes to rebuild the
global ordinals for the join
field.
Global ordinals, by default, are built eagerly: if the index has changed,
global ordinals for the join
field will be rebuilt as part of the refresh.
This can add significant time to the refresh. However most of the times this is the
right trade-off, otherwise global ordinals are rebuilt when the first parent-join
query or aggregation is used. This can introduce a significant latency spike for
your users and usually this is worse as multiple global ordinals for the join
field may be attempt rebuilt within a single refresh interval when many writes
are occurring.
When the join
field is used infrequently and writes occur frequently it may
make sense to disable eager loading:
PUT my-index-000001 { "mappings": { "properties": { "my_join_field": { "type": "join", "relations": { "question": "answer" }, "eager_global_ordinals": false } } } }
The amount of heap used by global ordinals can be checked per parent relation as follows:
# Per-index GET _stats/fielddata?human&fields=my_join_field#question # Per-node per-index GET _nodes/stats/indices/fielddata?human&fields=my_join_field#question
Multiple children per parent
editIt is also possible to define multiple children for a single parent:
Multiple levels of parent join
editWe don’t recommend using multiple levels of relations to replicate a relational model. Each level of relation adds an overhead at query time in terms of memory and computation. For better search performance, denormalize your data instead.
Multiple levels of parent/child:
PUT my-index-000001 { "mappings": { "properties": { "my_join_field": { "type": "join", "relations": { "question": ["answer", "comment"], "answer": "vote" } } } } }
The mapping above represents the following tree:
question / \ / \ comment answer | | vote
Indexing a grandchild document requires a routing
value equals
to the grand-parent (the greater parent of the lineage):
On this page