- Elasticsearch Guide: other versions:
- Getting Started
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure Settings
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- Important System Configuration
- Upgrading Elasticsearch
- Stopping Elasticsearch
- Set up X-Pack
- Breaking changes
- Breaking changes in 5.6
- Breaking changes in 5.5
- Breaking changes in 5.4
- Breaking changes in 5.3
- Breaking changes in 5.2
- Breaking changes in 5.1
- Breaking changes in 5.0
- Search and Query DSL changes
- Mapping changes
- Percolator changes
- Suggester changes
- Index APIs changes
- Document API changes
- Settings changes
- Allocation changes
- HTTP changes
- REST API changes
- CAT API changes
- Java API changes
- Packaging
- Plugin changes
- Filesystem related changes
- Path to data on disk
- Aggregation changes
- Script related changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Shadow replica indices
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- X-Pack APIs
- Info API
- Explore API
- Machine Learning APIs
- Close Jobs
- Create Datafeeds
- Create Jobs
- Delete Datafeeds
- Delete Jobs
- Delete Model Snapshots
- Flush Jobs
- Get Buckets
- Get Categories
- Get Datafeeds
- Get Datafeed Statistics
- Get Influencers
- Get Jobs
- Get Job Statistics
- Get Model Snapshots
- Get Records
- Open Jobs
- Post Data to Jobs
- Preview Datafeeds
- Revert Model Snapshots
- Start Datafeeds
- Stop Datafeeds
- Update Datafeeds
- Update Jobs
- Update Model Snapshots
- Security APIs
- Watcher APIs
- Migration APIs
- Deprecation Info APIs
- Definitions
- X-Pack Commands
- How To
- Testing
- Glossary of terms
- Release Notes
- 5.6.16 Release Notes
- 5.6.15 Release Notes
- 5.6.14 Release Notes
- 5.6.13 Release Notes
- 5.6.12 Release Notes
- 5.6.11 Release Notes
- 5.6.10 Release Notes
- 5.6.9 Release Notes
- 5.6.8 Release Notes
- 5.6.7 Release Notes
- 5.6.6 Release Notes
- 5.6.5 Release Notes
- 5.6.4 Release Notes
- 5.6.3 Release Notes
- 5.6.2 Release Notes
- 5.6.1 Release Notes
- 5.6.0 Release Notes
- 5.5.3 Release Notes
- 5.5.2 Release Notes
- 5.5.1 Release Notes
- 5.5.0 Release Notes
- 5.4.3 Release Notes
- 5.4.2 Release Notes
- 5.4.1 Release Notes
- 5.4.0 Release Notes
- 5.3.3 Release Notes
- 5.3.2 Release Notes
- 5.3.1 Release Notes
- 5.3.0 Release Notes
- 5.2.2 Release Notes
- 5.2.1 Release Notes
- 5.2.0 Release Notes
- 5.1.2 Release Notes
- 5.1.1 Release Notes
- 5.1.0 Release Notes
- 5.0.2 Release Notes
- 5.0.1 Release Notes
- 5.0.0 Combined Release Notes
- 5.0.0 GA Release Notes
- 5.0.0-rc1 Release Notes
- 5.0.0-beta1 Release Notes
- 5.0.0-alpha5 Release Notes
- 5.0.0-alpha4 Release Notes
- 5.0.0-alpha3 Release Notes
- 5.0.0-alpha2 Release Notes
- 5.0.0-alpha1 Release Notes
- 5.0.0-alpha1 Release Notes (Changes previously released in 2.x)
WARNING: Version 5.6 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Match Query
editMatch Query
editmatch
queries accept text/numerics/dates, analyzes
them, and constructs a query. For example:
GET /_search { "query": { "match" : { "message" : "this is a test" } } }
Note, message
is the name of a field, you can substitute the name of
any field (including _all
) instead.
match
editThe match
query is of type boolean
. It means that the text
provided is analyzed and the analysis process constructs a boolean query
from the provided text. The operator
flag can be set to or
or and
to control the boolean clauses (defaults to or
). The minimum number of
optional should
clauses to match can be set using the
minimum_should_match
parameter.
The analyzer
can be set to control which analyzer will perform the
analysis process on the text. It defaults to the field explicit mapping
definition, or the default search analyzer.
The lenient
parameter can be set to true
to ignore exceptions caused by
data-type mismatches, such as trying to query a numeric field with a text
query string. Defaults to false
.
Fuzziness
editfuzziness
allows fuzzy matching based on the type of field being queried.
See Fuzziness for allowed settings.
The prefix_length
and
max_expansions
can be set in this case to control the fuzzy process.
If the fuzzy option is set the query will use top_terms_blended_freqs_${max_expansions}
as its rewrite
method the fuzzy_rewrite
parameter allows to control how the query will get
rewritten.
Fuzzy transpositions (ab
→ ba
) are allowed by default but can be disabled
by setting fuzzy_transpositions
to false
.
Here is an example when providing additional parameters (note the slight
change in structure, message
is the field name):
GET /_search { "query": { "match" : { "message" : { "query" : "this is a test", "operator" : "and" } } } }
Zero terms query
editIf the analyzer used removes all tokens in a query like a stop
filter
does, the default behavior is to match no documents at all. In order to
change that the zero_terms_query
option can be used, which accepts
none
(default) and all
which corresponds to a match_all
query.
GET /_search { "query": { "match" : { "message" : { "query" : "to be or not to be", "operator" : "and", "zero_terms_query": "all" } } } }
Cutoff frequency
editThe match query supports a cutoff_frequency
that allows
specifying an absolute or relative document frequency where high
frequency terms are moved into an optional subquery and are only scored
if one of the low frequency (below the cutoff) terms in the case of an
or
operator or all of the low frequency terms in the case of an and
operator match.
This query allows handling stopwords
dynamically at runtime, is domain
independent and doesn’t require a stopword file. It prevents scoring /
iterating high frequency terms and only takes the terms into account if a
more significant / lower frequency term matches a document. Yet, if all
of the query terms are above the given cutoff_frequency
the query is
automatically transformed into a pure conjunction (and
) query to
ensure fast execution.
The cutoff_frequency
can either be relative to the total number of
documents if in the range [0..1)
or absolute if greater or equal to
1.0
.
Here is an example showing a query composed of stopwords exclusively:
GET /_search { "query": { "match" : { "message" : { "query" : "to be or not to be", "cutoff_frequency" : 0.001 } } } }
The cutoff_frequency
option operates on a per-shard-level. This means
that when trying it out on test indexes with low document numbers you
should follow the advice in Relevance is broken.
On this page