- Filebeat Reference: other versions:
- Filebeat overview
- Quick start: installation and configuration
- Set up and run
- Upgrade
- How Filebeat works
- Configure
- Inputs
- Multiline messages
- AWS CloudWatch
- AWS S3
- Azure Event Hub
- Azure Blob Storage
- Benchmark
- CEL
- Cloud Foundry
- CometD
- Container
- Entity Analytics
- ETW
- filestream
- GCP Pub/Sub
- Google Cloud Storage
- HTTP Endpoint
- HTTP JSON
- journald
- Kafka
- Log
- MQTT
- NetFlow
- Office 365 Management Activity API
- Redis
- Salesforce
- Stdin
- Streaming
- Syslog
- TCP
- UDP
- Unix
- winlog
- Modules
- General settings
- Project paths
- Config file loading
- Output
- Kerberos
- SSL
- Index lifecycle management (ILM)
- Elasticsearch index template
- Kibana endpoint
- Kibana dashboards
- Processors
- Define processors
- add_cloud_metadata
- add_cloudfoundry_metadata
- add_docker_metadata
- add_fields
- add_host_metadata
- add_id
- add_kubernetes_metadata
- add_labels
- add_locale
- add_network_direction
- add_nomad_metadata
- add_observer_metadata
- add_process_metadata
- add_tags
- append
- cache
- community_id
- convert
- copy_fields
- decode_base64_field
- decode_cef
- decode_csv_fields
- decode_duration
- decode_json_fields
- decode_xml
- decode_xml_wineventlog
- decompress_gzip_field
- detect_mime_type
- dissect
- dns
- drop_event
- drop_fields
- extract_array
- fingerprint
- include_fields
- move_fields
- parse_aws_vpc_flow_log
- rate_limit
- registered_domain
- rename
- replace
- script
- syslog
- timestamp
- translate_sid
- truncate_fields
- urldecode
- Autodiscover
- Internal queue
- Logging
- HTTP endpoint
- Regular expression support
- Instrumentation
- Feature flags
- filebeat.reference.yml
- Inputs
- How to guides
- Override configuration settings
- Load the Elasticsearch index template
- Change the index name
- Load Kibana dashboards
- Load ingest pipelines
- Enrich events with geoIP information
- Deduplicate data
- Parse data using an ingest pipeline
- Use environment variables in the configuration
- Avoid YAML formatting problems
- Migrate
log
input configurations tofilestream
- Migrating from a Deprecated Filebeat Module
- Modules
- Modules overview
- ActiveMQ module
- Apache module
- Auditd module
- AWS module
- AWS Fargate module
- Azure module
- CEF module
- Check Point module
- Cisco module
- CoreDNS module
- CrowdStrike module
- Cyberark PAS module
- Elasticsearch module
- Envoyproxy Module
- Fortinet module
- Google Cloud module
- Google Workspace module
- HAproxy module
- IBM MQ module
- Icinga module
- IIS module
- Iptables module
- Juniper module
- Kafka module
- Kibana module
- Logstash module
- Microsoft module
- MISP module
- MongoDB module
- MSSQL module
- MySQL module
- MySQL Enterprise module
- NATS module
- NetFlow module
- Nginx module
- Office 365 module
- Okta module
- Oracle module
- Osquery module
- Palo Alto Networks module
- pensando module
- PostgreSQL module
- RabbitMQ module
- Redis module
- Salesforce module
- Santa module
- Snyk module
- Sophos module
- Suricata module
- System module
- Threat Intel module
- Traefik module
- Zeek (Bro) Module
- ZooKeeper module
- Zoom module
- Exported fields
- ActiveMQ fields
- Apache fields
- Auditd fields
- AWS fields
- AWS CloudWatch fields
- AWS Fargate fields
- Azure fields
- Beat fields
- Decode CEF processor fields fields
- CEF fields
- Checkpoint fields
- Cisco fields
- Cloud provider metadata fields
- Coredns fields
- Crowdstrike fields
- CyberArk PAS fields
- Docker fields
- ECS fields
- Elasticsearch fields
- Envoyproxy fields
- Fortinet fields
- Google Cloud Platform (GCP) fields
- google_workspace fields
- HAProxy fields
- Host fields
- ibmmq fields
- Icinga fields
- IIS fields
- iptables fields
- Jolokia Discovery autodiscover provider fields
- Juniper JUNOS fields
- Kafka fields
- kibana fields
- Kubernetes fields
- Log file content fields
- logstash fields
- Lumberjack fields
- Microsoft fields
- MISP fields
- mongodb fields
- mssql fields
- MySQL fields
- MySQL Enterprise fields
- NATS fields
- NetFlow fields
- Nginx fields
- Office 365 fields
- Okta fields
- Oracle fields
- Osquery fields
- panw fields
- Pensando fields
- PostgreSQL fields
- Process fields
- RabbitMQ fields
- Redis fields
- s3 fields
- Salesforce fields
- Google Santa fields
- Snyk fields
- sophos fields
- Suricata fields
- System fields
- threatintel fields
- Traefik fields
- Windows ETW fields
- Zeek fields
- ZooKeeper fields
- Zoom fields
- Monitor
- Secure
- Troubleshoot
- Get help
- Debug
- Understand logged metrics
- Common problems
- Error extracting container id while using Kubernetes metadata
- Can’t read log files from network volumes
- Filebeat isn’t collecting lines from a file
- Too many open file handlers
- Registry file is too large
- Inode reuse causes Filebeat to skip lines
- Log rotation results in lost or duplicate events
- Open file handlers cause issues with Windows file rotation
- Filebeat is using too much CPU
- Dashboard in Kibana is breaking up data fields incorrectly
- Fields are not indexed or usable in Kibana visualizations
- Filebeat isn’t shipping the last line of a file
- Filebeat keeps open file handlers of deleted files for a long time
- Filebeat uses too much bandwidth
- Error loading config file
- Found unexpected or unknown characters
- Logstash connection doesn’t work
- Publishing to Logstash fails with "connection reset by peer" message
- @metadata is missing in Logstash
- Not sure whether to use Logstash or Beats
- SSL client fails to connect to Logstash
- Monitoring UI shows fewer Beats than expected
- Dashboard could not locate the index-pattern
- High RSS memory usage due to MADV settings
- Contribute to Beats
Filter and enhance data with processors
editFilter and enhance data with processors
editYour use case might require only a subset of the data exported by Filebeat, or you might need to enhance the exported data (for example, by adding metadata). Filebeat provides a couple of options for filtering and enhancing exported data.
You can configure each input to include or exclude specific lines or files. This
allows you to specify different filtering criteria for each input. To do this,
you use the include_lines
, exclude_lines
, and exclude_files
options under
the filebeat.inputs
section of the config file (see
Inputs). The disadvantage of this approach is
that you need to implement a configuration option for each filtering criteria
that you need.
Another approach (the one described here) is to define processors to configure global processing across all data exported by Filebeat.
Processors
editYou can define processors in your configuration to process events before they are sent to the configured output. The libbeat library provides processors for:
- reducing the number of exported fields
- enhancing events with additional metadata
- performing additional processing and decoding
Each processor receives an event, applies a defined action to the event, and returns the event. If you define a list of processors, they are executed in the order they are defined in the Filebeat configuration file.
event -> processor 1 -> event1 -> processor 2 -> event2 ...
It’s recommended to do all drop and renaming of existing fields as the last step in a processor configuration. This is because dropping or renaming fields can remove data necessary for the next processor in the chain, for example dropping the source.ip
field would remove one of the fields necessary for the community_id
processor to function. If it’s necessary to remove, rename or overwrite an existing event field, please make sure it’s done by a corresponding processor (drop_fields
, rename
or add_fields
) placed at the end of the processor list defined in the input configuration.
Drop event example
editThe following configuration drops all the DEBUG messages.
processors: - drop_event: when: regexp: message: "^DBG:"
To drop all the log messages coming from a certain log file:
processors: - drop_event: when: contains: source: "test"
Decode JSON example
editIn the following example, the fields exported by Filebeat include a
field, inner
, whose value is a JSON object encoded as a string:
{ "outer": "value", "inner": "{\"data\": \"value\"}" }
The following configuration decodes the inner JSON object:
filebeat.inputs: - type: log paths: - input.json json.keys_under_root: true processors: - decode_json_fields: fields: ["inner"] output.console.pretty: true
The resulting output looks something like this:
{ "@timestamp": "2016-12-06T17:38:11.541Z", "beat": { "hostname": "host.example.com", "name": "host.example.com", "version": "8.16.4" }, "inner": { "data": "value" }, "input": { "type": "log", }, "offset": 55, "outer": "value", "source": "input.json", "type": "log" }
On this page